
Analysis of the impact of Dissimilarity Space
within the Concept Drift Problem

1st Pedro Bianchini de Quadros
Polytechnic School

Pontifı́cia Universidade Católica do Paraná (PUCPR)
Curitiba, Brazil

quadros.pedro@pucpr.edu.br

2nd Gabriel Antonio Gomes de Farias
Polytechnic School

Pontifı́cia Universidade Católica do Paraná (PUCPR)
Curitiba, Brazil

gomes.farias@pucpr.edu.br

3rdJean Paul Barddal
Graduate Program in Informatics (PPGIa)

Pontifı́cia Universidade Católica do Paraná (PUCPR)
Curitiba, Brazil

jean.barddal@ppgia.pucpr.br

Abstract—Concept Drift is a known problem mostly in the
context of supervised models in which it affects negatively many
models capabilities due to the change of the original concept
and thus generating wrong target values. Due to time or other
phenomena, i.e., changes over time during many possible phases
in such a way that it deviates from generating the original
intended target because of those changes for the model to capture.
Researchers are continuously trying to find solutions that may be
able to identify concept drift and also to quickly adapt predictive
models so that its impact is reduced or entirely mitigated. In this
paper, our goal is to apply classification techniques based on
dissimilarity space representation based on various literature in
hopes that it may solve most of the divergence caused by the
problem and thus making a robust model in which can handle
the problem at hand and thus diminishing it’s impact in such that
the model targets maintain the correct classification even due to
changes overtime. The results indicate that the transformation
of data into the dissimilarity space did not yield significant
benefits. One of the classifiers utilizing Instance Hardness metrics
demonstrated performance comparable to that of traditional
classifiers.

Index Terms—Machine Learning, Dissimilarity spaces, Con-
cept drift, Data streams, Data Science.

I. INTRODUCTION

In modern times, the internet manages a plethora of data
streams, whether from a large e-commerce conglomerate,
a social network handling millions of user data points, or
a simple artisan’s blog. These data, as shown by Babcock
[1], are obtained via information traffic and then processed
within specific applications, each with a particular purpose,
such as labeling, which is prevalent in most classification
problems. There are applications where data streams are of
great importance, as the data must be received and processed
continuously, and in some cases, in real time.

An example is an environment with multiple sensors that
read a particular phenomenon to label various conditions,
such as “humid” or “dry.” If one of these sensors is altered
due to aging, calibration shifts, or replacement with a newer
model—there may be changes in the collected data that

directly impact the application, generating discrepancies and
anomalies in classification tasks due to data inconsistency.

This is just one scenario, but many real-world applications,
such as those in health, geography, finance, and other fields,
can be affected and suffer significant consequences. Therefore,
solutions are needed to address this issue.

The data that constitute a system are essential for the
operation of many applications and systems. However, cases
known as concept drift can lead to significant drawbacks at
various levels for these applications [2]. Concept drift is, in
essence, a shift in data recognition, commonly encountered in
classification problems within the realm of machine learning.
This drift can result from various factors, such as time, which
degrades the system, sensors, and components, the replace-
ment of a part or even an entire application, or the evolution
of classes, e.g., the addition of new classes, in a classification
problem. These alterations directly impact classification tasks,
giving rise to the concept drift problem.

In the examples provided, it is evident that this issue affects
various fields, with impacts ranging from mild to severe, as
in the case of pathology detection in medicine or the analysis
of geographic and biological phenomena to predict possible
natural calamities.

There are contingency methods to address cases of concept
drift. However, an important step would be to detect the
concept drift itself, and for this, algorithms such as the Drift
Detection Method, proposed by Gama et al. [3], and ADWIN
[4] are available. These algorithms focus on identifying statis-
tical discrepancies over time within a dataset. Algorithms and
detectors of this type are crucial for identifying when concept
drift occurs, serving as an essential tool for understanding our
data.

The development of solutions that mitigate issues caused by
these drifts brings significant benefits to all sectors of society
dealing with computational classification tasks, primarily to
achieve more robust and reliable models capable of handling
these drifts while remaining operationally optimal, thus con-

serving resources across various domains.
An essential concept for this research is that of dissimilarity

space, which refers to a proposal based on a type of classifi-
cation grounded in the concept of dissimilarity. This approach
was proposed by E. Pekalska et al. [5], where classification
models can be learned after converting data from its original
attribute space to the dissimilarity attribute space.

The available literature suggests the potential utility of such
a classifier due to its ability to operate independently of
patterns. In particular, traditional classification models rely
on commonly used pattern recognition techniques, whereas
dissimilarity recognition does not depend on this since it does
not operate by classifying in the way that we humans are
accustomed to. In potential applications, a classifier based
on this concept may be important for addressing problems
affected by concept drift, as it seeks to measure the degree of
dissimilarity.

The hypothesis of our work is as follows:
1) H0: The representation of a dataset in a dissimilarity

space results in lower dispersion of the data in concept
drift scenarios.

2) H1: The representation of a dataset in a dissimilarity
space results in equal or greater dispersion in concept
drift scenarios.

This paper is divided as follows. Section II introduces and
formalized concept drift, which is the main target of our
investigation. Section III describes our proposal, in which we
explore the use of the dissimilarity space as an alternative for
data classification under concept drift. In Section IV, we detail
the methodology for testing the proposed algorithms. This
section outlines the experimental design, including the datasets
that will be utilized, the performance metrics for evaluation,
and the statistical methods employed to analyze the results.
By conducting a series of experiments, we aim to assess
the effectiveness of our proposed approach in addressing
the challenges posed by concept drift. We will compare the
performance of classifiers operating in traditional attribute
spaces against those functioning in the dissimilarity space
to determine the advantages and limitations of each method.
We conclude the paper by discussing the implications of our
findings, potential areas for further research, and the broader
impact of our work on the field of computational classification.

II. CONCEPT DRIFT

.
Concept drift is when you a model trained and due to

something changing over time or due to other phenomena,
such as shifts, or calibration changes, these changes cause the
model’s predictions to deviate from expected behavior, leading
to inaccurate target values. This happens because the original
concept the model was built upon has been altered, which can
result in a decline in model performance or even render it
obsolete.

According to Gama et al. [6], it can be mathematically
defined as:

∃X : pt0(X, y) ̸= pt1(X, y)

Where X represents the set of features (or attributes) that
describe the instances in the dataset, and y is the target
variable, meaning what we are trying to predict or classify.

The notations pt0(X, y) and pt1(X, y) represent, respec-
tively, the joint probability distributions of the features X and
the variable y at two different points in time, t0 and t1.

The notation ∃X indicates that there exists at least one
instance where the probability distribution of y, conditioned on
X , changes over time. This implies the occurrence of ”concept
drift,” meaning that the relationship between the features and
the target variable has altered over time.

In addition to this definition, drifts are often categorized
into real concept drift and virtual concept drift. Real concept
drift refers to changes in p(y|X), which is the probability of
observing each class given the input attributes of the observed
class. These changes can occur with or without changes in
the input data p(X). According to the review by Gama et
al. [6], this concept was guided by Salganicoff (1997) in
the article “Tolerating Concept and Sampling Shift in Lazy
Learning Using Prediction Error Context Switching” [7] and
referred to as conditional change by Gao et al. (2007) in the
article “A General Framework for Mining Concept-Drifting
Data Streams with Skewed Distributions” [8] presented at the
7th SIAM International Conference on Data Mining.

For virtual concept drift, according to the same review, it
occurs when the distribution of the received data changes,
meaning that p(X) changes without affecting p(y|X). Ac-
cording to the review, this concept is presented by Delany
et al. in the article “A Case-Based Technique for Tracking
Concept Drift in Spam Filtering” [9] as well as by Tsymbal
in “The Problem of Concept Drift: Definitions and Related
Work. Technical Report, Department of Computer Science”
[10] and by Widmer and Kubat in 1993 in the article “Effec-
tive Learning in Dynamic Environments by Explicit Context
Tracking.” It is also important to note that the definition of
virtual concept drift has several different interpretations in
the literature however, for this research project, we will only
analyze problems involving real concept drift.

III. PROPOSAL

To address the problem of concept drift, we propose the
use of the dissimilarity space. According to the article ”The
Dissimilarity Approach: A Review” [11], the dissimilarity
space is discussed in the context of classification problems
where patterns have an intrinsic and detectable organization,
as seen with shapes, images, or texts. These patterns exhibit
latent aspects, such as order, time, hierarchy, or functional
relationships.

In the same study, two widely used strategies are presented:
the dissimilarity space and the dissimilarity vector. For this
study, we will focus specifically on the dissimilarity space,
which consists of a matrix that represents the disparity between
the analyzed points, reflecting their similarity or difference.

Upon reviewing the existing literature, several approaches
to dealing with concept drift can be noted, both in online and
offline settings. The article presents incremental algorithms,

which are offline approaches where examples are added se-
quentially (or in batches) to the data, and after this addition,
the model is updated.

Other approaches for detecting concept drift have also
been identified, in which dissimilarity is used to detect these
changes. In the articles “A Dissimilarity-based Drift Detection
Method” [12] and “Experimental Analysis on Dissimilarity
Metrics and Sudden Concept Drift Detection” [13], we en-
counter this alternative approach.

In the work by Pinagé and Dos Santos, a new approach
is presented where, in the incremental algorithm, the model
is updated with each new example received. However, as
discussed in the article, this approach may lead to unnecessary
updates in the system. To address this issue, the authors
developed a method that detects changes based on dissimilarity
in the data distribution, updating the decision model only
when a change is detected. The experiments conducted in
this research showed that the detection rates achieved were
comparable to traditional concept drift detectors, such as DDM
and EDDM, which are based on incremental learning and
performance monitoring.

In the work by Basterrech et al., similar to the study by
Pinagé and Dos Santos, dissimilarity is used to detect concept
drift. However, this article employs a dissimilarity metric
weighted on posterior probabilities, thus achieving significant
results.

According to these studies, we will analyze the impact of
dissimilarity on the concept drift problem, aiming to evaluate
how this approach can improve model adaptation in the
presence of concept changes in the data.

Fig. 1. Classifer flowchart.

As shown in Figure 1, the algorithm begins by splitting
the data into two subsets: training and testing. We denote the
training set as T = {x1, x2, . . . , xn} and the testing set as
T ′ = {z1, z2, . . . , zm}.

After the initial split, we proceed to calculate the dissimilar-
ity space between the instances of the training set. For this, we

select a reference set R = p1, p2, . . . , pm, which will be used
as the basis for calculating the distances. The dissimilarity
between the instances in the training set T and the reference
set R is obtained through the Euclidean distance, given by the
following equation:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2

This calculation results in a dissimilarity matrix D, also
called a dissimilarity space, which contains the distances
between the instances of T and R, representing the dissim-
ilarity between them. The dissimilarity space is, therefore,
constructed based on this distance matrix.

A relevant aspect of this process is the selection of instances
that will compose the reference set R. We proceeded with
analyzing the following approaches:

1) Random Selection
In this approach, we will use instances from the training
set T that are selected randomly to form the reference
set R.
Let T be a set of instances. We want to form a subset
R such that R ⊆ T and |R| = x, where x is the number
of randomly selected instances. Mathematically, we can
represent this as follows:

R ⊆ T and |R| = x

Thus, R is a set formed by x elements of T :

R = {t1, t2, . . . , tx | ti ∈ T}

2) K-means

In this approach, we use the K-means algorithm to
segment the training set T into k clusters. The algorithm
organizes the data into groups, and for each cluster, it
selects a centroid that serves as a representation of the
group. These centroids are then used to form a new set,
R, which is a subset of the training set T .
Formally, we can define R ⊆ T , where |R| = x, with x
being the number of selected centroids. Thus, R consists
of x elements extracted from T , that is:

R = {t1, t2, . . . , tx | ti ∈ T}

Each element ti in R represents a centroid associated
with one of the clusters formed in the set T .

3) Instance Hardness

For Instance Hardness, we calculate the instance hard-
ness. In Smith’s paper [14], it is shown that instance
hardness is the property indicating the likelihood of an
instance being misclassified. In other words, outliers and
incorrectly labeled instances are expected to have high
instance hardness, as a learning algorithm will need to
overfit to classify them correctly.

Knowing this, the same paper presents metrics that
evaluate various aspects of the hardness level of an
individual instance. For this research, we will use the
kDN, which measures the local overlap of an instance in
the original task space relative to its nearest neighbors
(using Euclidean distance) that do not share the same
target class value.

kDN(x) = |{y : y ∈ kNN(x) ∧ t(y) ̸= t(x)}|
k

The kNN(x) is the set of k nearest neighbors of x,
and t(x) is the target class for x. From this metric, we
select the instances from the set T that have the highest
hardness values, thus forming the set R. Formally, we
can define R ⊆ T , where |R| = x, with x being the
number of selected instances. Thus, R consists of x
elements extracted from T :

R = {t1, t2, . . . , tx | ti ∈ T}

Each element ti in R represents a selected instance
with high hardness, ensuring that R captures the most
challenging characteristics of the set T . This selection
process is crucial for enhancing the efficiency of our
model, as it focuses the analysis on the instances that
most impact the classifier’s performance.

After selecting set R and constructing the dissimilarity
space, we use the set T ′ to test the model. In this research, we
are testing with data that presents concept drift, which we will
explain in more detail in Section IV, where we provide further
details on how the models were tested. We also collected the
metrics for the tested models and approaches.

IV. ANALYSIS

In this section, we present the experimental protocol adopted
to assess our proposal, followed by an analysis of the results
obtained. The experimental protocol outlines the steps taken
to simulate concept drift using a dataset generated by MOA,
detailing the structure of the experiments conducted. Specif-
ically, we describe how instances from the training set are
randomly selected to form a reference set, and we delineate
the classifiers employed, including traditional and proposed
models. Finally, we analyze the results of the experiments,
providing organized tables for visualization and interpretation
of the classifier performances.

A. Experimental Protocol

To simulate concept drift and analyze the results, we will
perform two experiments. We will generate a dataset using
MOA [15] with 100,000 instances and apply concept drift
starting from instance 50,000 onwards. Thus, the dataset will
have an initial concept and an altered concept, with a training
and testing split of 50/50.

The two experiments will be as follows:
1) Train classifiers with the initial concept and altered

concept, in a 50/50 proportion.
2) Divided into two stages:

a) From the first half of the dataset (initial concept),
25% will be used for training and 25% for testing.

b) Using 25% of the first half (initial concept) for
training and the entire second half (altered concept)
for testing.

In this study, we employed traditional classifiers such as
K-Nearest Neighbors, considering both the version with the
nearest neighbor (KNN1) and the version with the three near-
est neighbors (KNN3), as well as the Gaussian Naive Bayes
and Decision Tree classifiers. These were used alongside the
proposed classifiers: DissimilarityRNGClassifier, Dissimilar-
ityCentroidClassifier, and DissimilarityIHDClassifier, which
were developed to explore different approaches to constructing
the dissimilarity space. To perform the experiments, we used
synthetic datasets generated by MOA, which include:

TABLE I
DATASET CHARACTERISTICS

Dataset Total Instances Attributes Classes
AgrawalGenerator [16] 100,000 9 2
AssetNegotiationGenerator [17] 100,000 5 2
SEAGenerator [18] 100,000 3 2

Finally, to evaluate the classifiers applied to this problem,
we use accuracy as the performance metric. The accuracy is
mathematically defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

Where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false positives,
and FN is the number of false negatives.

B. Analysis

The experiments were conducted following the protocol de-
scribed in Section IV-A, with results organized into tables for
ease of visualization. In each table, we grouped classifiers, the
applied estimators, and their respective accuracies, enabling
direct comparisons between the strategies and techniques
employed. In order to facilitate the interpretation of all tables,
we provide a legend of abbreviations for the classifiers (see
Table II)

TABLE II
TABLE OF ABBREVIATIONS AND CLASSIFIERS

Abbreviation Classifier
DTC DecisionTreeClassifier
DIHD DissimilarityIHDClassifier

DC DissimilarityCentroidClassifier
DRNG DissimilarityRNGClassifier
GNB GaussianNB

KNN1 KNeighborsClassifier - Neighbors 1
KNN3 KNeighborsClassifier - Neighbors 3

1) Test 1: Tables III and IV display the accuracies of the
classifiers tested with two approaches: the ”per class” and
”all class” strategies. It is observed that the Dissimilarity
Instance Hardness(DIHD), based on instance hardness, showed

TABLE III
AVERAGE OF CLASSIFIERS USING THE PER CLASS STRATEGY

Classifier Estimator Accuracy
GNB Empty estimator 69.315
DIHD KNN3 66.078
KNN3 Empty estimator 65.599
DRNG KNN3 65.159
DIHD DT 64.417
DIHD KNN1 64.123

DC KNN3 63.954
KNN1 Empty estimator 63.733

DT Empty estimator 63.687
DC KNN1 62.701

DRNG KNN1 62.567
DC DT 61.727
DC GNB 61.500

DRNG DT 61.361
DIHD GNB 56.595
DRNG GNB 56.501

TABLE IV
AVERAGE OF CLASSIFIERS USING THE ALL CLASS STRATEGY

Classifier Estimator Accuracy
GNB Empty estimator 69.315

KNN3 Empty estimator 65.599
DIHD KNN3 65.273
DRNG KNN3 65.159
KNN1 Empty estimator 63.733

DT Empty estimator 63.687
DIHD KNN1 63.173
DIHD DT 63.035

DC KNN3 62.663
DRNG KNN1 62.567
DRNG DT 61.361

DC DT 61.254
DC KNN1 61.223
DC GNB 58.328

DRNG GNB 56.501
DIHD GNB 51.041

slightly better performance than the other proposed classifiers,
suggesting an advantage in more complex classifications,
though without statistical significance. This performance may
be attributed to DIHD’s focus on harder instances, which could
aid in imbalanced classes, although the improvement observed
remains suable.

2) Test 2: During the initial phase of testing, which in-
volved training the classifiers using only the preliminary
concept, the results fell short of expectations. The average ac-
curacies ohbained were either lower than or equivalent to those
achieved with established traditional classifiers, indicating that
the new initial approach did not yield significant improvements
compared to conventional methods. Tables V and VI present
the outcomes of the two strategies employed: an overview
of the classifiers and estimators applied, along with their
average accuracies. Notably, the Decision Tree (DT) classifier
demonstrated the highest accuracy in both tables, whereas
other classifiers, such as Dissimilarity Random Number Gen-
erator (DRNG) and Dissimilarity Instance Hardness (DIHD),
achieved lower accuracies, particularly when combined with
the Gaussian Naive Bayes (GNB) estimator.

TABLE V
AVERAGE OF CLASSIFIERS USING THE PER CLASS STRATEGY, METHOD 1

Classifier Estimator Accuracy
DT Empty estimator 88.011

DIHD KNN3 81.992
DC KNN3 81.610

DRNG KNN3 81.035
GNB Empty estimator 80.353

KNN3 Empty estimator 80.237
DRNG DT 78.224

DC DT 77.940
DIHD DT 77.916
DIHD KNN1 77.879

DC KNN1 77.750
DRNG KNN1 77.083
KNN1 Empty estimator 76.764

DC GNB 75.727
DIHD GNB 74.865
DRNG GNB 72.197

TABLE VI
AVERAGE OF CLASSIFIERS USING THE ALL CLASS STRATEGY, METHOD 1

Classifier Estimator Accuracy
DT Empty estimator 88.011

DRNG KNN3 81.035
GNB Empty estimator 80.353

KNN3 Empty estimator 80.237
DIHD KNN3 78.229
DRNG DT 78.224
DRNG KNN1 77.083
KNN1 Empty estimator 76.764

DC KNN3 76.275
DIHD DT 76.150
DIHD KNN1 74.336

DC DT 73.128
DC KNN1 72.552

DRNG GNB 72.197
DC GNB 71.641

DIHD GNB 67.076

In the second stage of testing, 25% of the first half (initial
concept) was utilized for training, while the entirety of the
second half (altered concept) was reserved for testing. The
results remained consistent with those of the first stage,
showing no significant improvements in the average accuracy
of the classifiers. Tables VII and VIII present the performance
of the classifiers under the two evaluation strategies.

Table VII summarizes the results of the per class strategy,
indicating that the Decision Tree (DT) classifier with an empty
estimator continues to exhibit the highest average accuracy
(75.596%), while other methods, such as Gaussian Naive
Bayes (GNB) and Dissimilarity Instance Hardness (DIHD)
with various estimators, demonstrated more varied perfor-
mance, reinforcing the limited stability of these classifiers for
the altered concept.

Conversely, Table VIII, which pertains to the all class strat-
egy, reveals that the DT maintains its lead, achieving results
slightly superior to those of the other classifiers, followed
by GNB. These findings suggest that, despite the variability
among classifiers and estimators, the introduction of the altered
concept did not positively impact accuracy, indicating a need

TABLE VII
AVERAGE OF CLASSIFIERS USING THE PER CLASS STRATEGY, METHOD 2

Classifier Estimator Accuracy
DT Empty estimator 75.596

GNB Empty estimator 74.596
DIHD KNN3 74.096
DRNG KNN3 72.824

DC KNN3 72.442
KNN3 Empty estimator 72.400
DIHD KNN1 70.492
DRNG KNN1 69.769
KNN1 Empty estimator 69.744
DIHD DT 69.713
DRNG DT 69.514

DC KNN1 69.302
DC DT 69.129
DC GNB 68.462

DIHD GNB 66.520
DRNG GNB 64.722

TABLE VIII
AVERAGE OF CLASSIFIERS USING THE ALL CLASS STRATEGY, METHOD 2

Classifier Estimator Accuracy
DT Empty estimator 75.596

GNB Empty estimator 74.596
DRNG KNN3 72.824
DIHD KNN3 72.798
KNN3 Empty estimator 72.400
DIHD DT 70.149
DRNG KNN1 69.769
KNN1 Empty estimator 69.744
DIHD KNN1 69.605

DC KNN3 69.566
DRNG DT 69.514

DC DT 66.591
DC KNN1 66.435
DC GNB 65.051

DRNG GNB 64.722
DIHD GNB 63.162

for novel approaches to enhance generalization.

V. CONCLUSION

The challenge associated with the concept drift involved
investigating how modifications in the dissimilarity space
impact classifier accuracy. Our goal was to demonstrate the
effect of this change on model performance, highlighting the
implications that the structure of the dissimilarity space may
have on the adaptability and accuracy of classifiers when
confronted with varying concepts.

To address this challenge, we conducted tests with existing
classifiers and implemented new models that utilize the dissim-
ilarity space during training. This approach aims to enhance
classification efficacy by enabling more efficient adaptation to
changes in the data.

The results indicate that the new classifiers, by incorporating
the dissimilarity space into their training process, showed
performance that was comparable to or lower than traditional
methods. According to the initial hypothesis, we were unable
to demonstrate that this was a good strategy, as there was
no significant increase in accuracy. This confirms hypothesis

H1, which states that the dispersion of the data is equal to or
greater than that of traditional classifiers.

However, when analyzing the data from each dataset sep-
arately, we observed that the instance hardness approach
performed slightly better than traditional classifiers. This in-
dicates that there is potential for further advancement in this
methodology. We need to conduct a more in-depth analysis
to understand why it only worked for the AssetNegotiation
dataset and to investigate the reasons behind the slight increase
in accuracy.

REFERENCES

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and issues in data stream systems,” in Proceedings of
the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, ser. PODS ’02. New York, NY,
USA: Association for Computing Machinery, 2002, p. 1–16. [Online].
Available: https://doi.org/10.1145/543613.543615

[2] F. Bayram, B. S. Ahmed, and A. Kassler, “From
concept drift to model degradation: An overview on
performance-aware drift detectors,” Knowledge-Based Sys-
tems, vol. 245, p. 108632, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705122002854

[3] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with
drift detection,” in Advances in Artificial Intelligence – SBIA 2004,
A. L. C. Bazzan and S. Labidi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 286–295.

[4] A. Bifet and R. Gavaldà, “Learning from time-changing data with
adaptive windowing,” vol. 7, 04 2007.

[5] E. Pekalska and R. P. W. Duin, The Dissimilarity Representation for
Pattern Recognition: Foundations And Applications (Machine Perception
and Artificial Intelligence). USA: World Scientific Publishing Co., Inc.,
2005.

[6] J. a. Gama, I. Žliobaitundefined, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,” ACM
Comput. Surv., vol. 46, no. 4, mar 2014. [Online]. Available:
https://doi.org/10.1145/2523813

[7] M. Salganicoff, “Tolerating concept and sampling shift in lazy
learning using prediction error context switching,” Artificial Intelligence
Review, vol. 11, no. 1, pp. 133–155, Feb 1997. [Online]. Available:
https://doi.org/10.1023/A:1006515405170

[8] J. Gao, W. Fan, J. Han, and P. S. Yu, A Gen-
eral Framework for Mining Concept-Drifting Data Streams
with Skewed Distributions, pp. 3–14. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.1

[9] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle, “A
case-based technique for tracking concept drift in spam filtering,”
Knowledge-Based Systems, vol. 18, no. 4, pp. 187–195, 2005, aI-2004,
Cambridge, England, 13th-15th December 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950705105000316

[10] A. Tsymbal, “The problem of concept drift: def-
initions and related work,” 2004. [Online]. Available:
https://api.semanticscholar.org/CorpusID:8335940

[11] Y. Costa, D. Bertolini, A. Jr, G. Cavalcanti, and L. Soares de Oliveira,
“The dissimilarity approach: a review,” Artificial Intelligence Review,
vol. 53, 04 2020.

[12] F. A. Pinage and E. M. dos Santos, “A dissimilarity-based drift detection
method,” in 2015 IEEE 27th International Conference on Tools with
Artificial Intelligence (ICTAI), 2015, pp. 1069–1076.

[13] S. Basterrech, J. Platoš, G. Rubino, and M. Woźniak, “Experimental
analysis on dissimilarity metrics and sudden concept drift detection,” in
Intelligent Systems Design and Applications, A. Abraham, S. Pllana,
G. Casalino, K. Ma, and A. Bajaj, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 190–199.

[14] M. R. Smith, T. Martinez, and C. Giraud-Carrier, “An instance level
analysis of data complexity,” Machine Learning, vol. 95, no. 2, pp. 225–
256, May 2014. [Online]. Available: https://doi.org/10.1007/s10994-
013-5422-z

[15] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: massive
online analysis,” J. Mach. Learn. Res., vol. 11, pp. 1601–1604, 2010.
[Online]. Available: https://dl.acm.org/doi/10.5555/1756006.1859903

[16] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: a per-
formance perspective,” IEEE Transactions on Knowledge and Data
Engineering, vol. 5, no. 6, pp. 914–925, 1993.

[17] F. Enembreck, B. C. Ávila, E. E. Scalabrin, and J.-P. Barthès, “Learning
drifting negotiations,” Appl. Artif. Intell., vol. 21, no. 9, p. 861–881, oct
2007. [Online]. Available: https://doi.org/10.1080/08839510701526954

[18] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea)
for large-scale classification,” in Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’01. New York, NY, USA: Association
for Computing Machinery, 2001, p. 377–382. [Online]. Available:
https://doi.org/10.1145/502512.502568

